
34

The Security War in File Systems: An Empirical Study from

A Vulnerability-centric Perspective

JINGHAN SUN and SHAOBO LI, University of Illinois at Urbana-Champaign, USA

JUN XU, University of Utah, USA

JIAN HUANG, University of Illinois at Urbana-Champaign, USA

This article presents a systematic study on the security of modern file systems, following a vulnerability-

centric perspective. Specifically, we collected 377 file system vulnerabilities committed to the CVE database

in the past 20 years. We characterize them from four dimensions: why the vulnerabilities appear, how the

vulnerabilities can be exploited, what consequences can arise, and how the vulnerabilities are fixed. This way,

we build a deep understanding of the attack surfaces faced by file systems, the threats imposed by the attack

surfaces, and the good and bad practices in mitigating the attacks in file systems. We envision that our study

will bring insights towards the future development of file systems, the enhancement of file system security,

and the relevant vulnerability-mitigating solutions.

CCS Concepts: • Security and privacy→ File system security; • Information systems→ Storage man-

agement;

Additional Key Words and Phrases: Storage systems, file system vulnerabilities

ACM Reference format:

Jinghan Sun, Shaobo Li, Jun Xu, and Jian Huang. 2023. The Security War in File Systems: An Empirical Study

from A Vulnerability-centric Perspective. ACM Trans. Storage 19, 4, Article 34 (September 2023), 26 pages.

https://doi.org/10.1145/3606020

1 INTRODUCTION

After decades of development since the 1960s, file systems have become a core component in nearly
all computer systems. Working as the direct interfaces to user data and typically running at a high
privilege, file systems are highly security-sensitive. This has incentivized the creation of various
techniques to harden the security of file systems, ranging from formal verification [21, 23, 75, 91]
to access control [31, 77] and sanity checking [35, 42, 54].

Despite the above efforts, the security of file systems is still frequently compromised [9, 76],
causing damages such as data breaches and hijacked execution. In addition, attackers often exploit
vulnerabilities in file systems to launch ransomware attacks, affecting hundreds of victims and
costing tens of millions of dollars [81, 93]. To gain insights towards changing this situation, it is

This work was partially supported by a NetApp Faculty Fellowship Award and NSF CAREER Award 2144796.

Authors’ addresses: J. Sun, S. Li, and J. Huang, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA, 61820;

emails: {js39, shaobol2, jianh}@illinois.edu; J. Xu, University of Utah, Salt lake City, Utah, USA, 84102; email: junxzm@cs.

utah.edu.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be

honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.

1553-3077/2023/09-ART34 $15.00

https://doi.org/10.1145/3606020

ACM Transactions on Storage, Vol. 19, No. 4, Article 34. Publication date: September 2023.

https://orcid.org/0000-0001-7785-2971
https://orcid.org/0000-0001-8883-5392
https://orcid.org/0009-0002-8128-5062
https://orcid.org/0000-0002-1125-671X
https://doi.org/10.1145/3606020
mailto:permissions@acm.org
https://doi.org/10.1145/3606020
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3606020&domain=pdf&date_stamp=2023-10-03

34:2 J. Sun et al.

beneficial to build a systematic understanding of the security of file systems from angles such as
the attack surfaces [60, 85] in file systems and the threats imposed by the attack surfaces. Past stud-
ies [49, 64] on file systems mostly focus on functionality-related perspectives, failing to provide
the desired security-centric understanding. Prior studies [16, 49] made an initial effort to investi-
gate the filesystem bugs and security in Linux. However, they targeted solely generic file systems,
with a focus on the causes and consequences, which lacks an analysis of the whole lifecycle of
the vulnerability exploitation and fixes. We believe that a thorough understanding of the attack
exploitation procedure in file systems could help developers to advance the design principles and
implementation strategies of file systems.

In this article, we present an in-depth study on the security of various file systems, aiming to fun-
damentally understand the entire vulnerability exploitation procedure and possible fix strategies.
Specifically, our study centers around addressing the following questions:

• Q1: What are the major attack surfaces in file systems?
• Q2: What are the threats posed by the attack surfaces?
• Q3: What are the common approaches to exploiting these attack surfaces by attackers?
• Q4: How are the attack surfaces fixed?

Methodology: To answer the above questions, our study takes a vulnerability-centric approach
with a focus on the reported file system vulnerabilities. We examined the full exploitation paths
of vulnerabilities, including their root causes, exploitation techniques, and the methods used to
fix them. In total, we collected 377 file system vulnerabilities committed to the CVE database [33]
in the past 20 years. They reported explicit security implications and covered nearly all the main-
stream file systems (generic file systems such as Ext4 [52], XFS [82], and F2FS [44], mobile file sys-
tems such as HFS [38] and APFS [12], and networked file systems such as NFS [58], GlusterFS [29],
and Ceph [19]).

We manually analyzed the 377 vulnerabilities and sought answers to questions Q1 to Q4. First,
we investigated the root causes of the vulnerabilities by analyzing the vulnerable code and the
corresponding patch(es). We then categorized the vulnerabilities based on their root causes. This
enabled us to gain an understanding of the attack surfaces opened by the filesystem vulnerabilities
and the characteristics of the attack surfaces (answering Q1). Second, we manually and statically
reasoned the possible execution paths to exploit the vulnerabilities. In this process, we summarized
the potential threats that adversaries can bring by following those exploiting paths (answering
Q2 and Q3). Finally, we surveyed the patches to the vulnerabilities, unveiling the good and bad
practices in mitigating the attack surfaces (answering Q4). Throughout the study, we derived a set
of findings. We summarize the major ones that help answer Q1–Q4 as follows.
Attack surfaces: Vulnerabilities in file systems are diverse. Although 27% are general types of
vulnerabilities that may appear in other software systems (e.g., memory errors and race condi-
tions), a unique cause of these general vulnerabilities is the addition of new features, such as
crash-consistency models into file systems. The remaining vulnerabilities are unique to file sys-
tems but attributed to different reasons:

• 29% are rooted in sanity checks that are used to validate the states of various file system
properties (e.g., namespace, inode attributes, and file category). The sanity checks are highly
semantic related, whose implementation is complicated and often leads to vulnerabilities.
• 15% are due to the lack of permission checks or incorrect access control. Similar to

sanity checks, permission checks and access control are semantic dependent and highly
complex. Their buggy implementations largely turn into permission- and access-related
vulnerabilities.

ACM Transactions on Storage, Vol. 19, No. 4, Article 34. Publication date: September 2023.

The Security War in File Systems 34:3

• 18% are introduced when the functionality is extended to support the use environments of
specific file systems. For instance, many vulnerabilities appear in encryption mechanisms
adopted by mobile file systems to defend against physical attacks.

Threats and their exploitation procedure: File systems vulnerabilities are dangerous. As we
will illustrate later in Figure 6, file system vulnerabilities pose a similar security threat level to that
of vulnerabilities in other OS components. The specific consequences after exploiting file system
vulnerabilities vary across vulnerability types.

• Exploiting general types of vulnerabilities (e.g., memory errors) in file systems can largely
cause their common sequences, such as denial-of-service (DoS) and hijacked execution. An
interesting observation is that general vulnerabilities in file systems can more often lead to
data leakage because file systems directly deal with user data.
• Exploiting erroneous sanity checks can also lead to DoS but more often data leakage, which

allows attackers to initiate further attacks such as privilege escalation and permission
bypass.
• Exploiting lack of permission checks or incorrect access control produces more predictable

consequences, often including permission bypass and privilege escalation as well as
subsequent damages such as data leakage and data corruption.
• Exploiting the remaining vulnerabilities typically causes consequences pertaining to the

use contexts of the file systems. For instance, exploiting vulnerabilities in the encryption
modules of mobile file systems often enables physical attacks, whereas exploiting vul-
nerabilities in the networking management of network file systems usually leads to code
injection attacks.

Fixes with patches: File system patches are diverse in both complexity and functionality—56%
of the patches only change less than 10 lines of code, using simple operations such as adding a
boundary check and fixing a syntax error (see the details in Figure 8). In contrast, around 20% of the
patches bring modifications to over 50 lines of code, involving complex behaviors ranging from full
validation of data structures to fixes in multiple components. The majority of existing and current
patches work in an ad-hoc style. For instance, the patches to many race conditions simply make the
responsible operations atomic. These ad-hoc patches can heal the target vulnerabilities, but they
fail to prevent similar vulnerabilities from emerging or fundamentally mitigate them. Nevertheless,
our study identifies positive signs. Strategies to enforce preventive and secure-by-design patching
are arising. For instance, many patches of race conditions switch from lock-based implementations
to lock-free implementations, fundamentally eliminating issues such as deadlocks. File systems are
also often correlated, as are their patches. In particular, a patch to the VFS subsystem often requires
updating the underlying file systems. Otherwise, the patch may not come into effect. However,
today’s practice often overlooks the correlated file systems when patching the target ones, thus
leading to insecure patches.

Contributions: Our main contributions are as follows.

• We perform the first in-depth study on the security of file systems from a vulnerability-
centric perspective. The study unveils the attack surfaces of file systems, followed by de-
mystifying the root causes and threats of the attack surfaces.
• We present 21 previously unknown findings throughout the study. Besides facilitating a

deeper understanding of the attack surfaces, the findings reveal how the development of file
systems influences or even impedes security.
• We distill 7 insights from the results and findings of the study. The insights point out the

deficiencies in today’s practice of addressing security threats faced by file systems and also
bring up a set of guidance towards improvements.

ACM Transactions on Storage, Vol. 19, No. 4, Article 34. Publication date: September 2023.

34:4 J. Sun et al.

Table 1. File Systems Covered in Our Study1

Type File Systems # of CVE

Generic Ext4, VFS, XFS, F2FS, BtrFS, profs, Ext2, Ext3, tmpfs, ReiserFS, JFS 178
Mobile HFS/HFS+, APFS, F2FS, eCryptFS 57
Networked NFS, OpenAFS, GlusterFS, CephFS, HDFS 142

Total – 377

2 STUDY METHODOLOGY

Our study aims to understand the attack surfaces in file systems, from the perspectives summarized
as Q1–Q3. To support the study, we consider public vulnerabilities as the data source. In compar-
ison with other applicable data sources such as attacks that happened in the past, vulnerabilities
are more accessible and more abundant.

2.1 Data Collection

We collected file system vulnerabilities from the CVE database [33]. We considered the CVE data-
base for three reasons. First, the CVE reports are reviewed and confirmed by trustworthy parties
(major IT vendors, security companies, and research organizations [7]) and, thus, offer high relia-
bility. Second, the CVE reports largely provide important details, such as root cause information
and patch information. Such details are helpful for us to answer Q1–Q3. Third, the CVE reports
are large in number and diverse in terms of sources, which should properly reflect the overall
situation.

Specifically, we examined the CVE reports committed in the past 20 years (January 1999 to
December 2020) and identified those associated with mainstream file systems. They cover most
of the widely deployed open-sourced file systems, as illustrated in Table 1. Older reports were
omitted since they may not represent what is happening at present. We further refined the
reports to only keep those carrying information about or giving references to the following three
criteria: (i) location of the vulnerable code, (ii) analysis of the root cause (comprehensive or
brief), (iii) possible exploitation of the vulnerability and subsequent consequences (which will
be verified following our approach in Section 2.2). We present below an example CVE report
(CVE-2018-1094) that includes the three aforementioned criteria:

The ext4_fill_super function in fs/ext4/super.c (criterion i, location of code) in the
Linux kernel through 4.15.15 does not always initialize the crc32c checksum driver (cri-

terion ii, root cause), which allows attackers to cause a denial of service (criterion iii,

consequence) via a crafted ext4 image.

In total, we filtered out 35 CVEs, and kept 377 CVEs that cover the three criteria. We present
their distribution across time in Figure 1. We also collected the patches to these CVEs to further
understand the strategies used to fix the vulnerabilities. Among all CVEs, 62% of them have open-
sourced their patches, which facilitates our analysis.

2.2 Vulnerability Analysis

We ran three analyses on each of the 377 vulnerabilities.

1VFS (Virtual File System) [4] is a software layer that lies between the operating system kernel and the actual file system

implementations, providing a unified interface to access different file systems. A VFS vulnerability is not exploited alone

but rather together with its underlying generic file systems. NFS (Network File System [58]) is a network protocol that

allows computers to access files over a network. In our study, we cover both of its NFSv3 and NFSv4 implementations.

ACM Transactions on Storage, Vol. 19, No. 4, Article 34. Publication date: September 2023.

The Security War in File Systems 34:5

Fig. 1. Distribution of vulnerabilities over the past 20 years.

Fig. 2. An uninitialized memory vulnerability in XFS and its patch (CVE-2010-3078).

Root cause analysis. The first analysis focuses on understanding the root cause of a CVE report.
In this analysis, we first extract descriptions of the root causes from the report and then verify the
description through interpretation of the vulnerable code and its patch.

Exploitation analysis. Following the root cause analysis, we aim to understand the possible
exploitation of a vulnerability and the subsequent consequences. One common approach is to
reproduce the existing proof-of-concept (PoC) exploits against the vulnerability [56]. These PoC
exploits trigger simulated attacks with test programs and reproduce the consequences to expose
the system weakness. However, PoC exploits are not available for most of the CVE reports due to
security concerns.

In our study, we use a more generic and lightweight approach. We first parse the description in
a CVE report to retrieve the reported exploitation and its consequences. We then reason the vul-
nerable code to identify execution paths that can verify the description. Specifically, an execution
path successfully verifying the exploitation must meet the following conditions:

• The execution path covers a feasible route from a user-space interface to the vulnerable code.
• The execution path covers a feasible route to triggering the vulnerability.
• The execution path covers a feasible route from triggering the vulnerability to causing the

described consequence(s).

If no such execution paths can be identified for a CVE report, we skip the report. The example in
Figure 2 illustrates our approach. In the example, a local data structure fa (declared at line 2) is not
fully initialized before it is copied to user space at line 7. The CVE report says “It allows local users
to obtain potentially sensitive information from kernel stack memory via an ioctl call”. We find that
any execution path first opening a legitimate file in an XFS file system and then calling ioctl (with
XFS_IOC_FSGETXATTR) on the opened file will trigger the vulnerability, and leak data from the
kernel stack. This way, the exploitation and the consequence are considered verified.

ACM Transactions on Storage, Vol. 19, No. 4, Article 34. Publication date: September 2023.

34:6 J. Sun et al.

Patch analysis. The last analysis examines the patches to file system vulnerabilities. One goal
is to understand the strategies used by the existing patches (e.g., ad-hoc or systematic). This way,
we expect to unveil whether today’s practice of file system patching can help fundamentally re-
solve the issues of vulnerabilities. Another goal of the analysis is to summarize the aspects over-
looked by file system developers when patching vulnerabilities. We anticipate bringing related
evidence to incentivize broader attention to those aspects.

2.3 Discussion of Study Validity

While we carefully designed our methodology, our study may have several limitations. First, sim-
ilar to other sampling-based studies, our study can miss certain types of vulnerabilities. Thus, our
findings might be biased towards the collected samples. To mitigate the issue, we include as many
types of popular file systems as possible in our CVE dataset, from generic file systems ext4 [52] to
networked file systems GlusterFS [29] and HDFS [37]. Our study also does not aim to discover un-
caught vulnerabilities in file systems. Second, we verify the exploitation of a vulnerability and the
consequences through static reasoning. Unlike PoC exploits, static reasoning does not guarantee
the fidelity of the results. As such, we may present underestimated/exaggerated/erroneous threats
of the vulnerabilities. To mitigate this issue, we document the execution paths identified to exploit
the vulnerability and then have another person review and vet the execution paths. Any execution
paths that raise discrepancy are discarded. Third, the analysis of the patches can often require deep
domain knowledge. Lack of such knowledge will lead to misunderstanding about the patches. To
mitigate the problem, we only allow authors whose research focus is file/storage systems to look
at the patch and again, we have multiple authors vet the results.

Similar to prior characteristic studies that may suffer from limitations of sampling, we make
our best effort to collect the available vulnerabilities. Given that we focus on popular file systems
developed over the past two decades, we believe that the limitations do not invalidate our study
results. We also encourage readers to focus on the attack procedure behind each case rather than
the precise numbers, since a single vulnerability can cause massive severe damages.

3 TAXONOMY OF FILE SYSTEM VULNERABILITIES

We present the breakdown of file system vulnerabilities in Table 2, and their distribution over
time in Figure 1. Popular file systems tend to have more CVEs. For example, the popular Linux file
system ext4 [52] has the largest number of vulnerabilities reported. To facilitate our study, we first
build a deeper understanding of the categories of vulnerabilities. We categorize the vulnerabilities
into two types:

• Generic vulnerabilities – vulnerabilities that can appear in any kind of software systems. The
major types include memory errors and race conditions.
• Semantic vulnerabilities – vulnerabilities that are unique to file system design and imple-

mentation. These vulnerabilities are mostly caused by errors related to file system seman-
tics, such as violations to the file system permission model or missing sanity checks to the
metadata structures.

The categorization brings a set of statistical findings and interesting observations. We summa-
rize our findings as follows:
F-1: Generic vulnerabilities are common in file systems (>27%) but present positive signs.

And there has been a misconception that generic vulnerabilities are decreasing as file

systems become mature. Our study reveals that there would be a significant amount of deep
memory and concurrency vulnerabilities that can be detected with advanced bug-finding tools, as
shown in Table 2. Generic vulnerabilities account for a significant portion of the vulnerabilities

ACM Transactions on Storage, Vol. 19, No. 4, Article 34. Publication date: September 2023.

The Security War in File Systems 34:7

Table 2. Summary of File System Vulnerabilities

File Systems Vulnerabilities
Type Name Release Time #CVEs M C S P N O

Generic

JFS [2] 1990 4 50% 0% 50% 0% 0% 0%

Ext2 [18] 1993 7 14% 14% 43% 14% 0% 14%

XFS [82] 1993 23 30% 4% 35% 4% 0% 26%

VFS [4] 1995 28 18% 11% 40% 18% 0% 14%

procfs [55] 1999 18 22% 6% 11% 22% 0% 39%

ReiserFS [5] 2000 5 40% 0% 40% 20% 0% 0%

Ext3 [80] 2001 11 9% 0% 36% 18% 0% 36%

tmpfs [78] 2001 6 17% 0% 17% 33% 0% 33%

Ext4 [52] 2008 45 13% 4% 49% 4% 0% 24%

Btrfs [68] 2009 13 15% 8% 38% 31% 0% 8%

F2FS [44] 2012 18 11% 11% 56% 6% 0% 17%

Total 178 19% 6% 39% 13% 0% 22%

Mobile

HFS/HFS+ [38] 1985 8 25% 0% 75% 0% 0% 0%

eCryptFS [36] 2006 16 44% 0% 25% 19% 0% 13%

F2FS [44] 2012 11 36% 0% 45% 9% 0% 9%

APFS [12] 2016 4 25% 25% 25% 25% 0% 0%

Others – 18 22% 17% 33% 6% 0% 22%

Total 57 32% 7% 39% 11% 0% 12%

Networked

NFS [63] 1984 72 17% 7% 13% 20% 24% 19%

GlusterFS [29] 2005 18 16% 0% 11% 11% 39% 22%

OpenAFS [3] 2006 27 44% 4% 11% 11% 22% 7%

HDFS [37] 2006 6 0% 0% 33% 67% 0% 0%

CephFS [84] 2012 19 16% 0% 16% 21% 26% 21%

Total 142 21% 4% 13% 19% 25% 16%

M: Memory Errors; C: Concurrency Issues; S: Sanity Check Errors; P: Permission Errors; N: Network Errors; O:

Others (e.g., hash collisions such as CVE-2014-7283).

Fig. 3. Distribution of memory errors reported from file systems over time. The deployment of JANUS [88]

and code property graph (CPG) [89] led to spikes of reported memory bugs in 2013 and 2018.

in file systems. In particular, memory errors and concurrency issues led to 21.7% and 5.5% of all
the vulnerabilities, respectively. The numbers are not surprising since file systems are largely de-
veloped in memory unsafe languages (e.g., C/C++) and widely support concurrency.

There is no doubt that the above numbers give the important message that generic vulnera-
bilities still constitute a major attack surface in file systems. We cannot overlook generic vulner-
abilities, since we do observe a gradual rise in memory errors after 2012 (see Figure 3). Various
bug-finding tools (e.g., JANUS [88] in 2018 and Code Property Graph [89] in 2013) also emerged
in recent years. Real-world deployment of these tools since 2012 has been disclosing more generic
vulnerabilities in file systems. Consider Figure 3 as an example. Code Property Graph [89] and

ACM Transactions on Storage, Vol. 19, No. 4, Article 34. Publication date: September 2023.

34:8 J. Sun et al.

JANUS [88], after deployment, discover a surge of memory errors in generic file systems. JANUS
applies fuzzing techniques to file system vulnerability detection by mutating file system images
and manipulating file system operations as the input to the fuzzer. The large search space of fuzzing
helps detect deep memory errors that cannot be manually tested via hand-crafted images (e.g.,
CVE-2018-10880). This could encourage researchers to apply other advanced bug detection tools
to file system vulnerabilities.

F-2: Semantic vulnerabilities are the dominant category of vulnerabilities in file systems

(43%). File systems involve highly complex semantics for reliable and efficient file management.
Implementation of the semantics is challenging and often error-prone, bringing the dominant cat-
egory of vulnerabilities. There are two major sources leading to semantic vulnerabilities, sanity
checks and file permissions. We separately discuss them in the following.

Sanity checks. File systems maintain a mass of semantic-related states, such as file system names-
pace, inode attributes, cache consistency, and so on. Missing sanity checks on the states is a major
way of introducing vulnerabilities. For instance, the implementations of the journaling in Ext2 and
Ext3 never validate the journal superblock before reading it, which can cause an assertion or even
kernel corruption (CVE-2011-4132). Erroneous sanity checks on the states is another way of intro-
ducing vulnerabilities. For example, the f2fs utilities before version 1.12.0 has a logical flaw when
validating the sanity of the superblock (CVE-2020-6070). The logical flaw can lead to bypass of
validation and even user-controlled execution. In total, missing sanity checks and erroneous sanity
checks caused 29% of the total vulnerabilities in file systems.

File permissions. File permissions are indispensable to the protection of user data. To enforce file
permissions, file systems rely on standard permission models (e.g., u/g/o:r/w/x2) and access con-
trol list (ACL) (e.g., POSIX ACLs) to manage accesses. The actual implementations of permission
models and ACL, however, often miss or add insufficient permission checks, leading to 15% of the
vulnerabilities in file systems. For example, ReiserFS misses permission checks on the accesses to
the directory storing file attributes (i.e., xattrs) (CVE-2010-1146). This enables any user to access
or modify the attributes of files that are not allowed.

In contrast to generic vulnerabilities, semantic vulnerabilities are more concerning today. On
the one hand, most of the semantic vulnerabilities seem to be discovered in an ad-hoc manner. We
did not identify many tools that can systematically detect semantic vulnerabilities. While some
generic tools, such as the fuzzing-based JANUS, do help find semantic vulnerabilities, they are still
better at detecting generic vulnerabilities as they often lack domain-specific guidance to capture
semantic vulnerabilities. On the other hand, as shown in Figure 4, the number of reported semantic
vulnerabilities is clearly increasing over time. This might be attributed to the fact that more file
systems are included in our study as time moves forward or that the number of hidden semantic
vulnerabilities is significantly large. Either way, the trend implies an increasing threat posed by
semantic vulnerabilities in file systems.

Summary: Both generic vulnerabilities and semantic vulnerabilities open large attack surfaces in
file systems. However, generic vulnerabilities preset a seemingly improving trend while semantic
vulnerabilities show the opposite.

Insight-1: To heal the attack surfaces of file systems, more efforts should be prioritized to mit-
igate semantic vulnerabilities. In particular, it is wise to explore tools that can systematically
unveil semantic vulnerabilities.

2In the notation, “u”, “g”, and “o” represent three user classes: the owner user, the users in the file’s group, and other users,

respectively. Permission-symbols “r”, “w”, and “x” represent permission settings of three operations: “read”, “write”, and

“execute”, respectively.

ACM Transactions on Storage, Vol. 19, No. 4, Article 34. Publication date: September 2023.

The Security War in File Systems 34:9

Fig. 4. Distribution of vulnerabilities across time. Generic vulnerabilities are stabilizing and semantic vulner-

abilities present an increasing trend.

Table 3. Distribution of Vulnerabilities Caused by Different Features in Block Management

File Systems #CVEs Extent
Extended

Attribute

Delayed

Allocation

Flex/Meta

Block Group

Inline

Data

Ext4 [52] 45 29% 13% 4% 16% 6%

XFS [82] 23 6% 16% - - -
F2FS [44] 18 - 6% - - -
JFS [2] 4 - 25% - - -

Only representative file systems are selected. The numbers are per file system.

Our categorization brings knowledge about the major vulnerabilities to be addressed. However,
it gives few insights into how. To this end, we further investigate which file system functionality
and what file operations introduce the vulnerabilities. In a nutshell, every major functionality of
file systems brings in vulnerabilities, but inode management, block management, and page cache
system bring in more. And a key observation is that extending the existing core functionality
with new features contributed to a substantial number of vulnerabilities. We detail our findings
below.

F-3: Inode management is a major source of introducing vulnerabilities (13% out of Linux

FS). As per our study, inode management is also one of the most vulnerable parts of file systems.
One reason is the complexity in the nature of inode management. Another reason, which is be-
coming more dominant, is the increasing need to support newly emerging features such as inline
data blocks and extended attributes. A particular example is Ext4. Unlike Ext2 and Ext3, which
uniformly keep extended attributes in a block, Ext4 supports three on-disk formats to store ex-
tended attributes, including internal inode, additional block, and dedicated inode. In regular cases
where the extended attributes are small, Ext4 simply stores them in the internal inode. However,
when the attributes grow bigger, Ext4 will swap them to an additional block. This type of format
adjustment brings extra complexities and causes multiple vulnerabilities (e.g., CVE-2018-11412).
Prior work proposed isolating metadata structures of unrelated files and directories to avoid failure
propagation [50]. Inode replication was also proposed to ensure its fault tolerance [6]. We believe
that more efforts should be made to decouple the inode management from other components in
file systems.

F-4: Block management incurs a significant portion of vulnerabilities, and presents an

increasing trend. These vulnerabilities could be mitigated by having a more expressive

interface to offload block management to the storage devices. Block management accounts
for 21% of Linux file system vulnerabilities. In Table 3, we present the ratio of vulnerabilities
caused by different features in block management. This is not surprising since block management
has complexity comparable to inode management. Moreover, more features are being integrated

ACM Transactions on Storage, Vol. 19, No. 4, Article 34. Publication date: September 2023.

34:10 J. Sun et al.

into block management for better efficiency. In particular, recent file systems, such as Ext4 and
BtrFS, use extents instead of direct/indirect blocks to organize file blocks. The codebase of ex-
tent management (7K lines of code) is much larger than that of direct/indirect block organization
(1.5K lines of code). The need for fast indexing, flexible block group [25], and delayed block al-
location all contribute to the increasing complexity of the block management and, hence, result
in more vulnerabilities. Instead of purely relying on the storage software for the block manage-
ment, we believe that future file systems should explore an expressive interface to offload the
block management tasks to storage devices. This could not only ease the file system development
and verification procedure but also isolate its vulnerabilities from the OS kernel. As the hardware
resources (i.e., storage processor and memory capacity) inside storage controllers become more
powerful, the device is capable of handling more management tasks. The most recent work on
device-level file systems, such as DevFS [41] and KEVIN [43], demonstrated the feasibility of of-
floading the file system functionalities to storage devices; however, they purely focused on perfor-
mance improvement. It is highly desirable to explore the design trade-offs with respect to security
enhancement.

F-5: Page cache causes 12% of the vulnerabilities and they could leak sensitive kernel in-

formation. Modern file systems widely use page cache to temporarily store data blocks that will
be flushed to the persistent storage. The use of page cache avoids frequent interactions with the
persistent storage and, thus, improves the performance of applications. However, the extra layer
of cache creates new space for vulnerabilities. A major type of such vulnerabilities is caused by
uninitialized cache. Specifically, developers often do not initialize many fields of metadata struc-
tures saved in page cache. Later, when the page cache is flushed, the uninitialized fields, whose
memory may still carry sensitive kernel information, will be leaked to the persistent storage (e.g.,
CVE-2005-0400 and CVE-2006-6054). Any user who has access to the block can steal the sen-
sitive information. As we will discuss in Section 4, uninitialized memory in cache systems poses
higher threats than uninitialized memory in general because the former may always propagate to
the disk at the point of flush. Therefore, the memory safety for page cache is especially critical in
file systems.

F-6: Crash-consistency models for persistent storage often lead to uninitialized mem-

ory. Many file systems use crash consistency models, such as journaling [80], logging [69], and
shadow paging [39]. For instance, JFS employs a synchronous writing strategy to log the storage
operations and inode. This will ensure that the file system can always recover to a correct state
at a crash. The support of crash-consistency introduces new data structures and requires sophis-
ticated synchronizations across different components, which involves high complexity and often
incurs vulnerabilities. For example, JFS logs all relevant in-memory data structures but many of
them may not be properly initialized. The uninitialized data may later be written to persistent
storage, resulting in leakage of kernel information (e.g., CVE-2004-0181).

F-7: The mismatch between VFS semantics and file system implementations introduces

vulnerabilities. The correctness of VFS is crucial to the underlying file system. However, it at-
tracts much less attention than the integrity checking of the actual file system implementations.
Operating systems often incorporate a Virtual File System (VFS), which offers uniform interfaces
for user applications and redirects operations from applications to the underlying file system.
For things to work correctly, the underlying file system must follow the specifications of the
VFS. This is, however, often violated and brings many vulnerabilities. VFS vulnerabilities (such as
CVE-2015-1420 and CVE-2015-2925) could affect a wide range of file system implementations.
Many fault-tolerant file system designs, such as EnvyFS [14], also rely upon the correct operations
of the VFS layer. However, existing work mostly focused on the bug detection for each individual

ACM Transactions on Storage, Vol. 19, No. 4, Article 34. Publication date: September 2023.

The Security War in File Systems 34:11

file system (e.g., ext4, btrfs) [42, 64, 88], and they rarely work on the correctness of the VFS layer
[27]. Therefore, we believe that applying bug detection techniques such as model checking and
fuzzing to VFS could also significantly improve file system security.

F-8: Functionalities for supporting use context can become the attack vectors of mobile

and networked file systems. Unlike generic file systems, mobile file systems and networked
file systems need special functionalities to support their use contexts. Implementation of these
functionalities often involves vulnerabilities, which we detail below.

Mobile file systems typically run on portable devices such as smart phones, which can easily get
lost and encounter physical attacks. To protect user data under physical attacks, many mobile file
systems introduce encryption mechanisms. For instance, APFS leverages AES-XTS or AES-CBC
to encrypt user files on demand [1]. F2FS, instead of directly providing file encryption, utilizes
a cryptographic stacked file system (eCryptFS) to encrypt data. However, vulnerabilities can
arise in the implementation, often breaking the security of the encryption mechanisms. APFS
leaks encryption keys via the Disk Utility hints (CVE-2017-7149) and APFS allows reading
of decrypted data via Direct Memory Access (CVE-2017-13786). The eCryptFS on Samsung
KNOX 1.0 uses a weak key generation algorithm, which makes brute-force attacks feasible
(CVE-2016-1919).

Networked file systems need communication modules based on protocols such as HTTP and
RPC to support remote data transfer and access authentication. Many vulnerabilities appear in the
communication modules due to mishandling of malformed or crafted network packets, such as
zero payloads, crafted packet header, and uninitialized packets. For example, GlusterFS allows RPC
requests to create symbolic links (e.g., gfs3_symlink_req) pointing to file paths in the GlusterFS
volume. This enables adversaries to send crafted RPC to create arbitrary symbolic links in the
storage server and then execute arbitrary code (CVE-2018-10928).

Summary: Core components in file systems, due to their high complexities, contribute a majority
of the vulnerabilities. The situation is worsening because new features are being integrated into
the core components and are building up the complexities.

Insight-2: Different file system components introduce different types of vulnerabilities, which
are often related to their own semantics. This suggests that different tools should be tailored,
in a semantic-aware manner, to detect vulnerabilities in different components. For instance, to
detect uninitialized memory in cache systems, a tool needs to identify not only explicit access
(e.g., by regular file system operations) but also implicit access (e.g., by synchronization of cache
management).

Insight-3: At present, security seems insufficiently considered when new file system features
are added. It is desirable that the trade-off between functionality/efficiency and security is taken
into account before new features are incorporated, particularly in security-sensitive sectors. Ref-
erences about which new features bring what security issues can be found from F-3 to F-8. To
fundamentally improve the situation, proactive measures, such as regression test [8, 61, 92] on
the new features, must be taken.

4 THREATS OF FILE SYSTEM VULNERABILITIES

Our taxonomy brings insights towards mitigating vulnerabilities in file systems. However, file
system vendors or distributors may still hesitate to take action because the threats of the vulnera-
bilities are unclear to them. In this section, we summarize the threats posed by file system vulnera-
bilities. We anticipate bringing evidence to motivate mitigation and bring insights into prioritizing
the mitigation against more dangerous vulnerabilities.

ACM Transactions on Storage, Vol. 19, No. 4, Article 34. Publication date: September 2023.

34:12 J. Sun et al.

Overall, different vulnerabilities, when exploited, can lead to very diverse consequences.
Figure 5 gives an overview of the trajectories from vulnerabilities in different file systems. The
major attacks of generic file systems are caused by incomplete sanity checks, which exploit
memory errors such as memory corruption and memory contention, which often result in
Denial-of-Service (DoS). Mobile file systems have their unique attack paths, which mainly exploit
the physical access vulnerabilities. They could bring severe consequences, such as data leakage.
As networked file systems launch multiple file system instances, due to their incomplete packet
filtering and validation, their network connection could be attacked with crafted packets via
HTTP or RPC protocols. We also examine the distribution of vulnerabilities based on the threats
they can pose in Table 4. For example, DoS is a major threat to both generic and networked
file systems. A significant portion of vulnerabilities in mobile file systems can lead to privilege
escalation. Table 5 demonstrates the correlation between the vulnerability types (see Section 3)
and the threats. Following a similar organization of Section 3, we summarize our major findings
below.

F-9: File systems vulnerabilities impose a comparable level of security threat to vulner-

abilities in other OS components. Similar to our study on file system vulnerabilities, we gath-
ered vulnerabilities in other operating system (OS) components that are committed to the CVE
database in the past 20 years. As illustrated in Figure 6, file system vulnerabilities are as danger-
ous as vulnerabilities in other components, considering severity, impact, and exploitability as the
metrics.

F-10: DoS is the dominant threat brought by vulnerabilities to file systems. About 61% of
all the vulnerabilities can lead to DoS. As shown in Table 5, DoS is also the most common threat
among memory errors, sanity check errors, network errors, and concurrency vulnerabilities. They
often first incur one of the following behaviors and eventually cause a DoS.

• Memory corruption: Memory errors and race conditions in file systems, as they typically
do, can often cause memory corruption, followed by a kernel panic, such as the case
CVE-2013-6382. Many semantic vulnerabilities can also lead to memory corruption and sub-
sequent kernel panics. The previously discussed CVE-2015-8839 is such an example.
• Memory consumption: Another major cause of DoS in file systems is excessive memory

consumption. Most of such cases are caused by memory leakage vulnerabilities. For in-
stance, XFS before Linux 4.5.1 does not properly free the memory allocated for extended
file attributes (CVE-2016-9685), which can be exploited to exhaust the memory and cause a
DoS.
• System hang: CPU overconsumption, mainly brought by infinite loops and deadlocks, can

turn into DoS. For instance, the integer overflow reported in CVE-2017-18257 can be ex-
ploited to trigger an infinite loop in the block allocation of F2FS, causing a system hang.
• Network congestion: Vulnerabilities derived from protocol flaws, which account for about

16% of all the vulnerabilities in networked file systems, frequently trigger DoS. As shown
in Table 5, 57% of the network errors can lead to DoS. Such vulnerabilities typically happen
because of mishandling of malformed network packets, which often easily disrupt normal
communication and result in DoS. For example, the remote procedure call (RPC) module in
OpenAFS (before 1.6.23 or 1.8.x before 1.8.2) does not restrict the size of an input. Adversaries
can send, or claim to send, large inputs and consume server resources waiting for those
inputs, blocking service to other valid connections (e.g., CVE-2018-16949).

F-11: Data leakage is another big threat that vulnerabilities pose to file systems. Three
major types of file system vulnerabilities often lead to data leakage. The first type is uninitialized

ACM Transactions on Storage, Vol. 19, No. 4, Article 34. Publication date: September 2023.

The Security War in File Systems 34:13

Fig. 5. Trajectory from vulnerabilities to threats in different types of file systems. For each type of file system,

we present a graph of its vulnerability exploitation trajectories. Each trajectory represents a feasible route

to triggering the vulnerability, which includes the root cause (e.g., sanity check), the exploitation methods,

and the consequence (e.g., DoS attack). The bolded lines represent the most common trajectories.

ACM Transactions on Storage, Vol. 19, No. 4, Article 34. Publication date: September 2023.

34:14 J. Sun et al.

Table 4. Distribution of File System Vulnerabilities Based on Their Threats

Type Name #CVEs D L E A O

Generic

JFS [2] 4 50% 25% 0% 25% 0%

Ext2 [18] 7 57% 14% 14% 14% 0%

XFS [82] 23 70% 22% 4% 4% 0%

VFS [4] 28 50% 4% 14% 25% 7%

procfs [55] 18 44% 22% 22% 6% 6%

ReiserFS [5] 5 60% 0% 40% 0% 0%

Ext3 [80] 11 82% 9% 0% 9% 0%

tmpfs [78] 6 33% 17% 50% 0% 0%

Ext4 [52] 45 87% 4% 7% 2% 0%

Btrfs [68] 13 54% 15% 8% 23% 0%

F2FS [44] 18 94% 0% 6% 0% 0%

Mobile

HFS/HFS+ [38] 8 25% 13% 62% 0% 0%

eCryptFS [36] 16 25% 25% 38% 0% 13%

F2FS [44] 11 18% 55% 27% 0% 0%

APFS [12] 4 0% 25% 75% 0% 0%

Others 18 28% 17% 33% 11% 11%

Networked

NFS [63] 72 68% 1% 12% 18% 0%

GlusterFS [29] 18 28% 17% 17% 38% 0%

OpenAFS [3] 27 63% 30% 4% 4% 0%

HDFS [37] 6 33% 17% 33% 17% 0%

CephFS [84] 19 73% 20% 7% 0% 0%

D: DoS, L: Data Leakage, E: Privilege Escalation, A: Access Permission Bypass, O: Other (e.g.,

write access to proc entries like CVE-2004-2613).

Table 5. Correlation Between the File System Vulnerability Types and Their

Threats

Type #CVEs D L E A O

Concurrency Issues 22 76% 8% 8% 8% 0%

Memory Errors 82 59% 26% 12% 1% 3%

Sanity Check Errors 111 60% 8% 18% 13% 1%

Permission Errors 56 20% 15% 26% 39% 0%

Network Errors 36 57% 16% 12% 10% 6%

We use the same taxonomy for vulnerabilities as in Table 2.

memory, where sensitive information, such as user data, file system metadata, and kernel
memory unintentionally propagates to unauthorized destinations (e.g., CVE-2005-0400 and
CVE-2004-0177). In comparison with other software systems, uninitialized memory in file systems
can more often lead to data leakage. As we pointed out in Section 3, file systems incorporate many
cache systems to improve their performance. Memory objects used by the cache systems shall be
flushed to the disk, which creates extra paths for uninitialized memory to leak.

The second type is permission-bypassing vulnerabilities. By exploiting such vulnerabilities, the
adversaries can gain access to files without the proper authorization and, thus, indirectly leak
private data. For instance, CVE-2012-4508 allows adversaries to obtain sensitive information from
a deleted file by exploiting a race condition to gain permissions.

ACM Transactions on Storage, Vol. 19, No. 4, Article 34. Publication date: September 2023.

The Security War in File Systems 34:15

Fig. 6. Vulnerabilities of different core OS components. We measure the vulnerabilities in three dimensions:

Severity, Impact, and Exploitability. For each CVE report, we obtain its severity score, CIA impacts

(impacts of confidentiality-integrity-availability), and access complexity from CVSS (common vulnerability

scoring system) [59]. Each CVSS score ranges from 0 to 10; the score of 10 represents the most severe, the

most impactful, and the most exploitable vulnerability.

The last type is vulnerabilities in mobile file systems that enable physical attacks. The most direct
consequence of such attacks is the breach of private data. For instance, physical adversaries, by
exploiting CVE-2014-7951 in Android Debug Bridge of Android 4.0.4, can gain a direct connection
to the device to read/write arbitrary files in the file system.

We further study the severity of data leakage vulnerabilities in various types of file systems
using the CVSS Severity Score [59]. We find that networked file systems have the highest severity
for data leakage, with a Severity Score of 4.5. This was higher than the average scores for generic
file systems (a score of 3.6) and mobile file systems (a score of 3.2). One possible reason for this is
that networked file systems typically enable multi-tenancy. These vulnerabilities allow attackers
to obtain password information from the server (CVE-2020-10762, CVE-2020-10763), potentially
affecting all tenants of the networked file system.

F-12: Attackers can bypass access control via exploiting vulnerabilities in the enforce-

ment of file permissions. Flaws in the enforcement of permissions largely become vulnerabili-
ties. In comparison with other types of vulnerabilities, permission-related vulnerabilities can often
be reliably exploited and consistently lead to permission bypassing.

Beyond the authentication of user identities, networked file systems also run access control on
file access requests. Two categories of vulnerabilities in this type of access control can also be
exploited to gain file permissions on the removed servers: (1) validation operations before setting
ACL are missing; (2) permission checks are missing. For example, the NFS client in Linux 2.6.29.3 or
before misses a check on the permission bits for execution, allowing local users to bypass permis-
sions and execute files on an NFSv4 fileserver (CVE-2009-1630). Similar issues are also reported
in CVE-2005-3623 and CVE-2016-1237.

F-13: Adversaries can achieve privilege escalation via exploiting file system vulnerabil-

ities. All the file systems we studied run at a high privilege. A significant subset of sanity-check
vulnerabilities can enable adversaries to improperly “inherit” the high privilege. Some repre-
sentative examples are: (i) CVE-2017-5551 preserves the setgid bit during a setxattr call in
a tmpfs file system, allowing local users to gain group privileges with restrictions on execute
permissions; (ii) CVE-2016-5393 wrongly gives HDFS service privileges to users who can only
authenticate with the HDFS NameNode. This enables arbitrary commands execution with the
same privileges as the HDFS service; (iii) CVE-2016-1572 does not validate mount destination
file system types, which allows local users to gain privileges by mounting over a nonstandard file
system.

Authentication protocol used in modern networked file systems can also fail due to vulner-
abilities and, thus, give users undeserved privileges. Current networked file systems either de-
velop their own authentication protocol [84] or reuse the third-party infrastructure [62, 79]. Both

ACM Transactions on Storage, Vol. 19, No. 4, Article 34. Publication date: September 2023.

34:16 J. Sun et al.

ways of authentication can be tricked and bypassed. We observe a large number of such cases in
Ceph and HDFS, mostly caused by mishandling of user credential messages (e.g., CVE-2013-4134,
CVE-2009-3516).

F-14: Vulnerabilities in mobile file systems can sabotage the protection of data privacy.

To secure private data, mobile file systems have adopted protection mechanisms, mainly including
encrypting user files [1] and isolating critical data inside trusted execution environments (TEEs).
However, both mechanisms can be bypassed due to vulnerabilities. Since vulnerabilities related to
file encryption have been discussed in Section 3 (see F-8), we now focus on TEEs below.

The TEE has become a standard feature on mobile devices, which has been leveraged by mobile
file systems to enable an isolated environment for protecting sensitive data. However, a drop-in
deployment of the TEE can be insufficient due to vulnerabilities in the interactions with the TEE.
For instance, a system crash in the non-secure domain of a TrustZone-enabled ARM platform will
trigger an interrupt to switch the system context to the secure domain. Therein, CPU, memory,
and register states can be accessed. However, an armored adversary can prevent the non-secure
domain to issue the context switch, and initiate a man-in-the-middle attack to obtain the execution
information. For another example, eCryptFS uses an algorithm to generate a 32-byte AES key that
combines the user password and 32-byte TIMA (TrustZone-based Integrity Measurement) key. The
vulnerability (CVE-2016-1919) occurs because Base64.getEncoder expends the input with a ratio
of 4:3. This means that only 24 bytes determine the final eCryptFS key and adversaries can easily
crack the key with a brute-force search.

F-15: Protocol flaws in networked file systems can enable code injection attacks. Con-
sider CephFS as an example. It uses the Ceph Object Gateway daemon (RGW) as an HTTP server
to communicate with the Ceph storage cluster and retrieve file data. The HTTP response splitting
(HRS) flaw (e.g., CVE-2015-5245) in the RGW can enable the well-known Carriage Return Line
Feed (CRLF) injection and cross-site scripting (XSS) attacks. Once the malicious code is injected,
attackers will have the privilege to compromise the victim server and then tamper the entire net-
worked storage cluster.

F-16: Vulnerabilities in a single instance of networked file system can impose threats to

the entire system. Networked file systems (e.g., HDFS [74] and GFS [28]) can often run a group of
parallel instances on a cluster of servers. Each instance runs atop the local file system and delegates
the file system to store data on the disk. The consequence of vulnerabilities in a single instance can
propagate to all other instances in the same group. Consider GlusterFS as an example. GlusterFS
supports brick multiplexing to reduce memory consumption, which allows multiple compatible
bricks to share the same process and manage their own data volumes. However, a NULL pointer
dereference (CVE-2018-10914) triggered by a client request in one instance can interrupt the brick
process. This will propagate to other multiplexed brick processes, crushing the entire GlusterFS.
Other similar cases include CVE-2012-4417, CVE-2019-15538, and CVE-2020-24394.

F-17: Vulnerabilities in different types of file systems present a different evolutionary

trend in their threats. As shown in Figure 7, vulnerabilities in generic file systems tend to result
in more DoS and fewer attacks of other types. However, vulnerabilities in mobile file systems
and networked file systems present an opposite evolutionary trend. A presumed reason is that
vulnerabilities in generic file systems are more conventional and their consequences are limited by
mitigation mechanisms such as memory sanitizer [71] and thread sanitizer [72]. In contrast, many
vulnerabilities in mobile/networked file systems belong to newly emerging types (e.g., protocol
flaws) and have been less mitigated. Considering all types of file systems together, the evolution
in the threat of their vulnerabilities presents no clear trend.

ACM Transactions on Storage, Vol. 19, No. 4, Article 34. Publication date: September 2023.

The Security War in File Systems 34:17

Fig. 7. Evolutionary trend of the threats imposed by file system vulnerabilities. As for mobile file systems,

no CVEs were reported before 2009.

Summary: The threats of file system vulnerabilities vary across different types, ranging from
more functionality-critical ones such as DoS to more security-critical ones such as privilege es-
calation. Historical data shows that file system vulnerabilities, in general, are not becoming less
harmful.
Insight-4: Our study unveils that different file system operations, when becoming vulnerable,
can turn into different threats. This brings insights towards the mitigating process (e.g., patching):
vulnerabilities involved in operations that can result in higher threats shall be prioritized. For
instance, uninitialized memory errors in cache systems, which often incur data leakage, deserve
an earlier fix than excessive memory consumption that typically incurs DoS. References about
which file system operations can lead to what threats can be found from F-10 to F-16.
Insight-5: Our study also unveils that vulnerabilities in mobile/networked file systems are pre-
senting increasing threats (e.g., more data leakage than DoS). Considering the increasing pop-
ularity of mobile/networked file systems in the coming era of the IoT, our study brings evi-
dence that more efforts should be prioritized to mitigate vulnerabilities in mobile/networked file
systems.

5 PATCHING OF FILE SYSTEM VULNERABILITIES

Our taxonomy and threat analysis offer insights and motivations to mitigate file system vulner-
abilities. We take a step further to analyze their patches and gain deeper insights. This will be
beneficial to file system developers since it can help people learn about the common patterns

ACM Transactions on Storage, Vol. 19, No. 4, Article 34. Publication date: September 2023.

34:18 J. Sun et al.

Fig. 8. Distribution of file system patches based on the lines of code (LoC) changed.

of patching file systems and guide them to avoid the deficiencies in today’s practice. As stated
in Section 2, we collected the open-sourced patches from CVE reports and obtained information
such as the lines of code (LoC) added, LoC removed, and the commit time. Our study on the
commit messages of each patch and the Debian Security Bug Tracker records [24] also shows that
it takes 3.1 years on average from when the vulnerability was introduced to it being fixed, which
is similar to other Linux system software [10]. Therefore, we do not study this further.

In the patch analysis process, we focus on answering these three questions: (1) How complex are
the patches? (2) How are the patches applied, systematically or in an ad-hoc manner? (3) Are patches
across different file systems correlated and how may that affect the patching process?

F-18: Most of the patches (56%) produce small modifications to the file systems. Figure 8
shows the distribution of patches based on their complexities (i.e., how many lines of code are mod-
ified). We find that a large number of patches are simply adding a check to the memory boundary
(e.g., CVE-2013-6382) or fixing a syntax error (e.g., CVE-2013-1848). These patches constitute the
low-complexity group. Most of the strategies are conventional, such as adding boundary checks
to fix buffer overflows (e.g., CVE-2008-3531). For instance, the patches of many race conditions
simply make the responsible operations atomic. The drawback of such ad-hoc strategies is they
are too passive. They can neither help prevent similar vulnerabilities in the codebase nor bring
global benefits, such as new designs. We believe that a more systematic strategy should be taken
(see our discussion in F-20).

F-19: A non-negligible portion (20%) of the patches involve complex modifications,

such as fixes to multiple file systems and comprehensive validations of file system data

structures. Some vulnerabilities that are shared across file systems can cause duplicated

patches. Most of the patches we studied aim to solve a unique flaw in a certain file system. In the
study, we discovered that for a shared vulnerability in multiple file systems, developers release
patches that have a similar strategy or even the same code logic. These patches build up the
high-complexity group. Strategies of a certain patch to a specific file system can be borrowed
by patches that are used by other types of file systems. For example, as shown in Figure 9(a),
the VFS subsystem added a new function setattr_killpriv to remove extended privilege
attributes (xattrs). Since most Linux file systems support xattrs, they have to properly invoke
this function after the permission check inode_chanдe_ok () to ensure security. As a result, these
file systems generate similar patches (Figures 9(b) and 9(c), CVE-2015-1350). This pattern also
occurs in the patching of xattr block caching in the ext2 and ext4 file systems. Both of the
file systems have to convert the original meta block cache from mbcache to mbcache2. Hence,
they should add the same sanity checking to the entries and generate similar patches (e.g.,
CVE-2015-8952).

A cross-file system patching approach could offer two major benefits. First, having a unified
solution simplifies the patch development process as well as the future maintenance. Second, file

ACM Transactions on Storage, Vol. 19, No. 4, Article 34. Publication date: September 2023.

The Security War in File Systems 34:19

Fig. 9. Similar patches to different Linux file systems for fixing the same VFS vulnerability.

systems that share the patch can take advantage of further improvements in each individual file
system, which enables us to improve the overall robustness and reliability.

F-20: Some patches demonstrate systematic strategies, which can benefit vulnerability

prevention. Despite ad-hoc strategies still being dominant, we do observe systematic strategies
in two cases. First, there are patches that perform systematic verification on file system data struc-
tures instead of simply applying an ad-hoc fix. For instance, CVE-2018-14613 reports a simple
invalid pointer dereference issue when mounting and operating a crafted btrfs image caused by
invalid block group items. This specific vulnerability could have been solved by a low-complexity
patch. However, the patch to it demonstrates good practice by adding a new sanity check function
that performs a complete check of the item size, offset, object id, type, and used space. This not
only helps fix the reported vulnerabilities but also removes the undiscovered hidden flaws to pre-
vent future vulnerabilities. Indeed, none of the follow-up CVEs has related issues when mounting
and operating on btrfs images. Second, many patches of race conditions switch from lock-based
implementations to lock-free implementations, such as deploying semaphore-based solutions
(e.g., CVE-2014-9710) or avoiding race conditions in the first place (e.g., CVE-2014-8086). These
patches bring design-wise insights, which are applicable to a more fundamental resolution of race
conditions.

F-21: Patches that modify the VFS need coordinated updates to the underlying file sys-

tems. A patch to the VFS subsystem often requires updating the underlying file systems. Oth-
erwise, the patch may not come into effect. In CVE-2015-1350, the VFS subsystem provides an
incomplete set of requirements for setattr operations, which under-specifies the removal of ex-
tended privilege attributes. The corresponding patch silently introduces a new VFS API to fix the
flaw. Concurrently, the patch has to modify all 21 affected underlying file systems to use the new
API. In this example, the complexity incurred by the need for coordinated patching is well handled,
but this is not always the case. For example, the patch to CVE-2016-7097 modifies VFS but fails to
update the complete set of 15 affected underlying file systems, leaving the vulnerability still open
(reported as CVE-2017-5551). Until one year later, another patch to CVE-2017-5551 eventually
fixed the problem.

ACM Transactions on Storage, Vol. 19, No. 4, Article 34. Publication date: September 2023.

34:20 J. Sun et al.

Table 6. Suggested Strategies to Patch Common Types of File System Vulnerabilities

Type Suggested Defense Strategies #CVEs % of Applicable CVEs

Sanity
checks

FS image validation before mounting 53 47.7%
Validating fs parameters upon file access 14 12.6%

Memory pointer validation and bounds checking 6 5.4%
Handle exceptions of division by zero 4 3.6%

Avoid integer overflows 4 3.6%
Concurrency

issues
Enforce atomic ToCToU race operations 9 40.9%

Support of lock-free optimizations 6 27.3%

Memory
errors

Initialize unused, allocated memory 32 39.0%
Initialize data before copying them from user space 20 24.4%

Reinitialize fs metadata upon file updates 12 14.6%

File
permissions

Check enforcement of user privileges 24 42.9%
Check file permissions for direct storage access 16 28.6%

Validate fs metadata information before mounting fs 3 5.4%

The third column shows the percentage of CVEs that can be fixed with the suggested strategies.

Summary: Patches to file system vulnerabilities carry different complexities. The patches also
adopt various strategies. Most of them are ad-hoc, bringing no help with addressing similar but
yet unknown vulnerabilities. However, patches following systematic strategies are arising. These
patches present preventive measures or new designs, offering insights towards fundamentally
mitigating vulnerabilities of the same root causes. Finally, file systems are often correlated. How-
ever, today’s practice often overlooks the correlated file systems when patching the target ones,
thus, leading to insecure patches.
Insight-6: Our study unveils that the current practice of patching file systems is largely passive.
Continuing this practice will likely prolong the arms race between vulnerability creation and
patching. To fundamentally escalate the security of file systems, the community should encour-
age and promote the adoption of preventive and secure-by-design patching. Exemplary strategies
observed by our study have been presented in F-20.
Insight-7: Better attention needs to be paid to the correlation of file systems when developing
patches. To ensure the correctness of patches, any modification to a file system (in particular,
VFS) must be validated to understand its impacts on other file systems. Whenever such impacts
arise, the affected file systems must be updated accordingly.

6 SUGGESTIONS

In this study, we find that a large portion of file system vulnerabilities are semantic related or use-
context related. We summarize the common suggested strategies used by the patches on generic
file system vulnerabilities in Table 6. The common defense strategies discussed of patching generic
file systems can be also applied to fix 44% of the mobile file system vulnerabilities and 34% of the
networked file system vulnerabilities. Here, we identify their unique defense strategies’ vulnera-
bilities, as shown in Tables 7 and 8.

S-1: Verifying file system implementations with semantics specified in VFS. As discussed,
VFS provides a uniform abstraction level for upper-level programs to interact with real file system
implementations. It offers semantics (e.g., POSIX) for accessing the underlying file systems. How-
ever, the real file system implementation may not exactly satisfy the semantics due to the unclear
specifications between the VFS and low-level file system implementations (e.g., CVE-2015-1350
and CVE-2016-7097). Prior verification studies of file systems [57, 75] mostly worked on crash
safety. Our findings reveal that more efforts are required to achieve the end-to-end verification

ACM Transactions on Storage, Vol. 19, No. 4, Article 34. Publication date: September 2023.

The Security War in File Systems 34:21

Table 7. Suggested Defense Strategies for Mobile fs Vulnerabilities

Suggested Defense Strategies # CVEs % of Applicable CVEs

Enhance authentication mechanisms in ADB channels 14 24.5%
Enhance USB debugging mode 11 19.3%

Enforce secure interaction between TrustZone and FS 7 12.3%

(Total) 32 56.1%

The second column shows the percentage of CVEs that could be fixed with the suggested strategies.

Table 8. Suggested Defense Strategies for Networked fs Vulnerabilities

Suggested Defense Strategies #CVEs % of Applicable CVEs

Enforce strict authentication/permission control 37 26.1%
Verify (HTTP/RPC) network packets 33 23.2%

Enforce VFS specifications 13 9.2%
Fault isolation between fs instances 10 7.0%

(Total) 93 65.5%

The second column shows the percentage of CVEs that could be fixed with the suggested strategies.

of each semantic mapping from the high-level VFS specification to the low-level file system
implementation.

S-2: Integrity check for file system images. Attackers can exploit the flaws in sanity checks
to bypass the validation of illegal file system data to initiate their attacks. Since the file system
provides data durability, the transient errors or modifications to the in-memory data structures
could be persisted to the disk (file system image), causing long-term threats to the host system.
Moreover, attackers can leverage crafted file system images with incorrect attributes, invalid links,
or illegal data to compromise the file system or the entire operating system (e.g., CVE-2018-14613
and CVE-2016-1572). To defend against such attacks, we encourage preventive measures or new
designs to enforce integrity checks on file system images before mounting.

S-3: Enhancing secure channels between mobiles and external physical devices. Due to
the unique attack surface of mobile file systems, they need to enforce stricter security checks
against physical attacks. As described in Section 3 and F-8, attackers could exploit flaws in en-
cryption mechanisms in mobile file systems. We need to further develop secure channels between
mobile devices and external devices such as Thunderbolt adapters and USB ports. According to
our study, nearly 23% of vulnerabilities in Android can be exploited by evil-maid attacks. These
attacks can be prevented by explicitly authorizing the mounting of external devices.

S-4: Enforcing secure communication between TEE and file systems. We still cannot solely
rely on TEE or encrypted file systems or even both to ensure the security of mobile file systems.
This is because the file system might not be able to correctly use, interact with, and manage the
trusted environments (e.g., CVE-2017-13786), and the encryption itself might be compromised by
brute force attacks (e.g., CVE-2016-1919). In particular, we have to ensure the secure interactions
between TEE and file systems, such as preventing the direct access to the memory used by the
Volume Daemon or storage management process from TrustZone. We have to carefully refine the
interfaces between them, which can be improved with the development at both the TEE and file
system sides [20, 65, 87].

S-5: Verifying network packet. According to our study, verifying the network packets, espe-
cially those via the HTTP or RPC protocols, can significantly reduce the risk of network attacks in

ACM Transactions on Storage, Vol. 19, No. 4, Article 34. Publication date: September 2023.

34:22 J. Sun et al.

networked file systems. The semantic specifications from upper-level service protocols defined by
network file systems will facilitate such network packet verification. Similar network verification
techniques have been developed in software-defined networking domains [66, 67] and packet level
authentication [47]. However, few of them focused on the semantic-aware verification of storage
traffic from networked file systems.

S-6: Fault isolation for networked file system instances. As discussed in Section 4, a file sys-
tem instance (e.g., a data volume manager) has correlations with many system components, such
as local file systems and OS kernel. These correlations significantly complicate the management
of file system instances and increase the attack surface. Providing a fault isolation mechanism for
file system instances can significantly enhance the security of the entire networked system. Sys-
tems techniques, such as containers [46, 73], sandbox [17], and TEE [13], have been proposed to
enforce the isolation between programs. They can be leveraged to enable isolation between file
system instances. However, a holistic approach that requires fine-grained function partition and
placement for networked file systems is still highly desirable [94].

7 RELATED WORK

Study of Bugs and Vulnerabilities. Past research has conducted many studies on defects in op-
erating systems. The studies vary in targets. Many of them [49, 54, 83, 88] focus on functionality
bugs in file systems while some others [30, 40] concentrate on virtual memory management prob-
lems. The studies also vary in scope that ranges from concurrent issues [26, 34, 45, 51] to specific
families of vulnerabilities [22, 48, 70]. Our work uses a methodology similar to many of the studies.
However, we focus on the security vulnerabilities in file systems. Unlike the previous file system
studies that focused on bug causes and consequences [49], our study centers around the under-
standing of the attack surface of file systems and the vulnerability exploitation procedure, while
covering a wider range of CVEs across different types of file systems. To the best of our knowledge,
our study is the first in-depth work of its kind.
Bug and Vulnerability Detection. Research in this line can be classified into two categories: bug
finding and formal verification. Bug finding tools, such as FiSC [91], eXplode [90], and juxta [54],
can discover file system bugs based on semantic-aware patterns. Our study can benefit these tools
by providing insights into expanding their patterns. Formal verification [11, 15, 21, 23, 32, 57, 75]
is also promising. However, at this stage, it is still challenging to verify the security of an entire file
system due to the high complexity [32, 75, 86]. Our study can complement formal verification. It
pinpoints the file system components that are more vulnerable, thus enabling formal verification
to narrow down the scope and scale up.
Secure File Systems. Besides bug study and detection, researchers have also been endeavoring
to build secure and reliable file systems [50, 53]. Lu et al. [50] proposed the physical disentangle-
ment to minimize storage faults propagation. Min et al. [53] leveraged transaction flash storage to
build crash-consistent file systems. Our study can bring insights to follow-up works in this line
of research. For instance, we find that many vulnerabilities in networked file systems are caused
by the lack of fault isolation across different instances. This can motivate efforts to develop fault
isolation mechanisms for file systems.

8 CONCLUSION

This article presents an empirical study on the security of modern file systems, following the angle
of inspecting vulnerabilities disclosed from mainstream file systems. Throughout the study, we
build the first systematic understanding of the attack surfaces faced by file systems, the threats
tied to the attack surfaces, and the limitations in today’s practice of addressing the attack surfaces.

ACM Transactions on Storage, Vol. 19, No. 4, Article 34. Publication date: September 2023.

The Security War in File Systems 34:23

We envision that our study will raise awareness of file system security and, more importantly, offer
insights towards improving file system security.

ACKNOWLEDGMENTS

We thank the anonymous reviewers for their helpful comments and feedback.

REFERENCES

[1] n.d. Apple File System secure encryption mechanism. https://9to5mac.com/2016/06/13/apple-file-system-apfs/

[2] n.d. Journaled File System Technology for Linux. http://jfs.sourceforge.net

[3] n.d. OpenAFS. https://www.openafs.org

[4] n.d. Overview of the Linux Virtual File System. https://www.kernel.org/doc/html/latest/filesystems/vfs.html

[5] n.d. ReiserFS. https://en.wikipedia.org/wiki/ReiserFS

[6] 2011. Metadata Replication for Ext4. https://lwn.net/Articles/465041/

[7] 2021. Request CVE IDs. https://cve.mitre.org/cve/request_id.html

[8] Hiralal Agrawal, Joseph Robert Horgan, Edward W. Krauser, and Saul A. London. 1993. Incremental regression testing.

In 1993 Conference on Software Maintenance. IEEE, 348–357.

[9] Adil Ahmad, Kyungtae Kim, Muhammad Ihsanulhaq Sarfaraz, and Byoungyoung Lee. 2018. OBLIVIATE: A data obliv-

ious filesystem for Intel SGX. In Network and Distributed System Security Symposium, (NDSS’18). San Diego, CA, USA.

[10] Nikolaos Alexopoulos, Manuel Brack, Jan Wagner, Tim Grube, Max Mühlhäuser, Andrew Meneely, and Dorian

Arnouts, Emmanouil Vasilomanolakis, Stephane Le, Steven Rowe, et al. 2022. How long do vulnerabilities live in the

code? A large-scale empirical measurement study on FOSS vulnerability lifetimes. In 31st USENIX Security Symposium

(USENIX Security’22). 359–376.

[11] Sidney Amani, Alex Hixon, Zilin Chen, Christine Rizkallah, Peter Chubb, Liam O’Connor, Joel Beeren, Yutaka Na-

gashima, Japheth Lim, Thomas Sewell, Joseph Tuong, Gabriele Keller, Toby C. Murray, Gerwin Klein, and Gernot

Heiser. 2016. CoGENT: Verifying high-assurance file system implementations. In Proceedings of the 21st International

Conference on Architectural Support for Programming Languages and Operating Systems (ASPLOS’16). Atlanta, GA.

[12] n.d. APFS: Apple File System. https://en.wikipedia.org/wiki/Apple_File_System

[13] Pierre-Louis Aublin, Florian Kelbert, Dan O’Keeffe, Divya Muthukumaran, Christian Priebe, Joshua Lind, Robert

Krahn, Christof Fetzer, David Eyers, and Peter Pietzuch. 2018. LibSEAL: Revealing service integrity violations using

trusted execution. In Proceedings of the 13th EuroSys Conference (EuroSys’18).

[14] Lakshmi N. Bairavasundaram, Swaminathan Sundararaman, Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-

Dusseau. 2009. Tolerating file-system mistakes with EnvyFS. In USENIX Annual Technical Conference, Vol. 9.

[15] James Bornholt, Antoine Kaufmann, Jialin Li, Arvind Krishnamurthy, Emina Torlak, and Xi Wang. 2016. Specifying

and checking file system crash-consistency models. In Proceedings of the 21st International Conference on Architectural

Support for Programming Languages and Operating Systems, ASPLOS’16. Atlanta, GA, USA.

[16] Miao Cai, Hao Huang, and Jian Huang. 2019. Understanding security vulnerabilities in file systems. In Proceedings of

the 10th ACM SIGOPS Asia-Pacific Workshop on Systems (APSys’19). Association for Computing Machinery, New York,

NY, USA, 8–15. https://doi.org/10.1145/3343737.3343753

[17] Justin Cappos, Armon Dadgar, Jeff Rasley, Justin Samuel, Ivan Beschastnikh, Cosmin Barsan, Arvind Krishnamurthy,

and Thomas Anderson. 2010. Retaining sandbox containment despite bugs in privileged memory-safe code. In Pro-

ceedings of the 17th ACM Conference on Computer and Communications Security (CCS’10).

[18] Remy Card. 1995. Design and implementation of the second extended filesystem. In Proceedings of the First Dutch

International Symposium on Linux, 1995.

[19] n.d. Ceph. https://en.wikipedia.org/wiki/Ceph_(software)

[20] David Cerdeira, Nuno Santos, Pedro Fonseca, and Sandro Pinto. 2020. SoK: Understanding the prevailing security vul-

nerabilities in trustzone-assisted TEE systems. In Proceedings of IEEE Symposium on Security and Privacy (Oakland’20).

[21] Haogang Chen, Tej Chajed, Alex Konradi, Stephanie Wang, Atalay Ileri, Adam Chlipala, M. Frans Kaashoek, and

Nickolai Zeldovich. 2017. Verifying a high-performance crash-safe file system using a tree specification. In Proceedings

of the 26th Symposium on Operating Systems Principles (SOSP’17). Shanghai, China.

[22] Haogang Chen, Yandong Mao, Xi Wang, Dong Zhou, Nickolai Zeldovich, and M. Frans Kaashoek. 2011. Linux kernel

vulnerabilities: State-of-the-art defenses and open problems. In APSys’11 Asia Pacific Workshop on Systems. Shanghai,

China.

[23] Haogang Chen, Daniel Ziegler, Tej Chajed, Adam Chlipala, M. Frans Kaashoek, and Nickolai Zeldovich. 2015. Using

crash hoare logic for certifying the FSCQ file system. In Proceedings of the 25th Symposium on Operating Systems

Principles, SOSP 2015. Monterey, CA, USA.

[24] Debian. 2022. Security Bug Tracker. https://security-tracker.debian.org/tracker/

ACM Transactions on Storage, Vol. 19, No. 4, Article 34. Publication date: September 2023.

https://9to5mac.com/2016/06/13/apple-file-system-apfs/
http://jfs.sourceforge.net
https://www.openafs.org
https://www.kernel.org/doc/html/latest/filesystems/vfs.html
https://en.wikipedia.org/wiki/ReiserFS
https://lwn.net/Articles/465041/
https://cve.mitre.org/cve/request_id.html
https://en.wikipedia.org/wiki/Apple_File_System
https://doi.org/10.1145/3343737.3343753
https://en.wikipedia.org/wiki/Ceph_(software)
 https://security-tracker.debian.org/tracker/

34:24 J. Sun et al.

[25] 2020. Ext4 Disk Layout. https://ext4.wiki.kernel.org/index.php/Ext4_Disk_Layout#Flexible_Block_Groups

[26] Pedro Fonseca, Cheng Li, Vishal Singhal, and Rodrigo Rodrigues. 2010. A study of the internal and external effects of

concurrency bugs. In Proceedings of the 2010 IEEE/IFIP International Conference on Dependable Systems and Networks,

DSN 2010. Chicago, IL, USA.

[27] Andy Galloway, Gerald Lüttgen, Jan Tobias Mühlberg, and Radu I. Siminiceanu. 2009. Model-checking the Linux

virtual file system. In International Workshop on Verification, Model Checking, and Abstract Interpretation. Springer,

74–88.

[28] Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung. 2003. The Google file system. In Proceedings of the nineteenth

ACM symposium on Operating systems principles (SOSP’03). 29–43.

[29] GlusterFS. n.d. GlusterFS architecture. https://docs.gluster.org/en/v3/Quick-Start-Guide/Architecture/

[30] Sudhakar Govindavajhala and Andrew W. Appel. 2003. Using memory errors to attack a virtual machine. In 2003

Symposium on Security and Privacy (SP). Berkeley, CA, USA.

[31] Andreas Gruenbacher. 2003. POSIX access control lists on Linux. In Proceedings of the 2003 USENIX Annual Technical

Conference (USENIX ATC’03). San Antonio, TX.

[32] Ronghui Gu, Zhong Shao, Hao Chen, Xiongnan (Newman) Wu, Jieung Kim, Vilhelm Sjöberg, and David Costanzo.

2016. CertiKOS: An extensible architecture for building certified concurrent OS kernels. In 12th USENIX Symposium

on Operating Systems Design and Implementation, OSDI 2016. Savannah, GA, USA.

[33] 2019. Researcher Reservation Guidelines. https://cve.mitre.org/cve/researcher_reservation_guidelines

[34] Haryadi S. Gunawi, Mingzhe Hao, Tanakorn Leesatapornwongsa, Tiratat Patana-anake, Thanh Do, Jeffry Adityatama,

Kurnia J. Eliazar, Agung Laksono, Jeffrey F. Lukman, Vincentius Martin, and Anang D. Satria. 2014. What bugs live

in the cloud? A study of 3000+ issues in cloud systems. In Proceedings of the ACM Symposium on Cloud Computing,

SoCC 2014. Seattle, WA, USA.

[35] Haryadi S. Gunawi, Vijayan Prabhakaran, Swetha Krishnan, Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-

Dusseau. 2007. Improving file system reliability with i/o shepherding. In Proceedings of 21st ACM SIGOPS Symposium

on Operating Systems Principles. 293–306.

[36] Michael Austin Halcrow. 2005. eCryptfs: An enterprise-class encrypted filesystem for Linux. In Proceedings of the 2005

Linux Symposium, Vol. 1. 201–218.

[37] 2019. Haoop Distributed File System. https://hadoop.apache.org/docs/r1.2.1/hdfs_design.html

[38] n.d. HFS: Hierarchical File System. https://en.wikipedia.org/wiki/Hierarchical_File_System

[39] Dave Hitz, James Lau, and Michael A. Malcolm. 1994. File system design for an NFS file server appliance. In USENIX

Winter 1994 Technical Conference. San Francisco, CA, USA.

[40] Jian Huang, Moinuddin K. Qureshi, and Karsten Schwan. 2016. An evolutionary study of Linux memory management

for fun and profit. In Proceedings of the 2016 USENIX Annual Technical Conference (USENIX ATC’16). Denver, CO, USA.

[41] Sudarsun Kannan, Andrea C. Arpaci-Dusseau, Remzi H. Arpaci-Dusseau, Yuangang Wang, Jun Xu, and Gopinath

Palani. 2018. Designing a true direct-access file system with DevFS. In 16th USENIX Conference on File and Storage

Technologies (FAST’18). Oakland, CA.

[42] Seulbae Kim, Meng Xu, Sanidhya Kashyap, Jungyeon Yoon, Wen Xu, and Taesoo Kim. 2017. Finding semantic bugs in

file systems with an extensible fuzzing framework. In Proceedings of the 27th ACM Symposium on Operating Systems

Principles (SOSP’19). Ontario, Canada.

[43] Jinhyung Koo, Junsu Im, Jooyoung Song, Juhyung Park, Eunji Lee, Bryan S. Kim, and Sungjin Lee. 2021. Modernizing

file system through in-storage indexing. In 15th USENIX Symposium on Operating Systems Design and Implementation

(OSDI’21). 75–92.

[44] Changman Lee, Dongho Sim, Joo Young Hwang, and Sangyeun Cho. 2015. F2FS: A new file system for flash storage.

In Proceedings of the 13th USENIX Conference on File and Storage Technologies, FAST 2015. Santa Clara, CA, USA.

[45] Tanakorn Leesatapornwongsa, Jeffrey F. Lukman, Shan Lu, and Haryadi S. Gunawi. 2016. TaxDC: A taxonomy of non-

deterministic concurrency bugs in datacenter distributed systems. In Proceedings of the 21st International Conference

on Architectural Support for Programming Languages and Operating Systems (ASPLOS’16). Atlanta, GA, USA.

[46] Xin Lin, Lingguang Lei, Yuewu Wang, Jiwu Jing, Kun Sun, and Quan Zhou. 2018. A measurement study on Linux

container security: Attacks and countermeasures. In Proceedings of the 34th Annual Computer Security Applications

Conference (ACSAC’18).

[47] Jed Liu, William Hallahan, Cole Schlesinger, Milad Sharif, Jeongkeun Lee, Robert Soulé, Han Wang, Călin Caşcaval,

Nick McKeown, and Nate Foster. 2018. P4v: Practical verification for programmable data planes. In Proceedings of the

2018 Conference of the ACM Special Interest Group on Data Communication (SIGCOMM’18).

[48] Kangjie Lu, Marie-Therese Walter, David Pfaff, Stefan Nümberger, Wenke Lee, and Michael Backes. 2017. Unleashing

use-before-initialization vulnerabilities in the Linux kernel using targeted stack spraying. In Network and Distributed

System Security Symposium, (NDSS’17). San Diego, CA, USA.

ACM Transactions on Storage, Vol. 19, No. 4, Article 34. Publication date: September 2023.

https://ext4.wiki.kernel.org/index.php/Ext4_Disk_Layout#Flexible_Block_Groups
https://docs.gluster.org/en/v3/Quick-Start-Guide/Architecture/
https://cve.mitre.org/cve/researcher_reservation_guidelines
https://hadoop.apache.org/docs/r1.2.1/hdfs_design.html
https://en.wikipedia.org/wiki/Hierarchical_File_System

The Security War in File Systems 34:25

[49] Lanyue Lu, Andrea C. Arpaci-Dusseau, Remzi H. Arpaci-Dusseau, and Shan Lu. 2013. A study of Linux file system

evolution. In Proceedings of the 11th USENIX Conference on File and Storage Technologies (FAST’13). San Jose, CA.

[50] Lanyue Lu, Yupu Zhang, Thanh Do, Samer Al-Kiswany, Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau.

2014. Physical disentanglement in a container-based file system. In 11th USENIX Symposium on Operating Systems

Design and Implementation, OSDI’14. Broomfield, CO, USA.

[51] Shan Lu, Soyeon Park, Eunsoo Seo, and Yuanyuan Zhou. 2008. Learning from mistakes: A comprehensive study on

real world concurrency bug characteristics. In Proceedings of the 13th International Conference on Architectural Support

for Programming Languages and Operating Systems, ASPLOS 2008. Seattle, WA, USA.

[52] Avantika Mathur, Mingming Cao, Suparna Bhattacharya, Andreas Dilger, Alex Tomas, and Laurent Vivier. 2007. The

new ext4 filesystem: Current status and future plans. In Proceedings of the Linux Symposium.

[53] Changwoo Min, Woon-Hak Kang, Taesoo Kim, Sang-Won Lee, and Young Ik Eom. 2015. Lightweight application-level

crash consistency on transactional flash storage. In 2015 USENIX Annual Technical Conference, USENIX ATC’15. Santa

Clara, CA, USA.

[54] Changwoo Min, Sanidhya Kashyap, Byoungyoung Lee, Chengyu Song, and Taesoo Kim. 2015. Cross-checking se-

mantic correctness: The case of finding file system bugs. In Proceedings of the 25th Symposium on Operating Systems

Principles, SOSP 2015. Monterey, CA, USA.

[55] Erik Mouw. 2001. Linux kernel procfs guide. Delft University of Technology (2001).

[56] Dongliang Mu, Alejandro Cuevas, Limin Yang, Hang Hu, Xinyu Xing, Bing Mao, and Gang Wang. 2018. Understand-

ing the reproducibility of crowd-reported security vulnerabilities. In 27th {USENIX} Security Symposium ({USENIX}
Security 18). 919–936.

[57] Luke Nelson, Helgi Sigurbjarnarson, Kaiyuan Zhang, Dylan Johnson, James Bornholt, Emina Torlak, and Xi Wang.

2017. Hyperkernel: Push-button verification of an OS kernel. In Proceedings of the 26th Symposium on Operating Sys-

tems Principles (SOSP’17).

[58] 2020. Network File System. https://en.wikipedia.org/wiki/Network_File_System

[59] n.d. NVD. https://nvd.nist.gov/vuln-metrics/cvss

[60] National Institute of Standards and Technology. 2022. Attack Surface. https://csrc.nist.gov/glossary/term/attack_

surface

[61] Akira K. Onoma, Wei-Tek Tsai, Mustafa Poonawala, and Hiroshi Suganuma. 1998. Regression testing in an industrial

environment. Commun. ACM 41, 5 (1998), 81–86.

[62] Brian Pawlowski, Chet Juszczak, Peter Staubach, Carl Smith, Diane Lebel, and Dave Hitz. 1994. NFS version 3: Design

and implementation.. In USENIX Summer Technical Conference. Boston, MA, USA.

[63] Brian Pawlowski, David Noveck, David Robinson, and Robert Thurlow. 2000. The NFS version 4 protocol. In Proceed-

ings of the 2nd International System Administration and Networking Conference (SANE 2000). Maastricht, Netherlands.

[64] Thanumalayan Sankaranarayana Pillai, Vijay Chidambaram, Ramnatthan Alagappan, Samer Al-Kiswany, Andrea C.

Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau. 2014. All file systems are not created equal: On the complexity of

crafting crash-consistent applications. In 11th USENIX Symposium on Operating Systems Design and Implementation,

OSDI’14. Broomfield, CO, USA.

[65] Sandro Pinto and Nuno Santos. 2019. Demystifying Arm TrustZone: A comprehensive survey. ACM Comput. Surv. 51,

6 (Jan. 2019).

[66] Gordon D. Plotkin, Nikolaj Bjørner, Nuno P. Lopes, Andrey Rybalchenko, and George Varghese. 2016. Scaling network

verification using symmetry and surgery. In Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium on

Principles of Programming Languages (POPL’16).

[67] Santhosh Prabhu, Kuan Yen Chou, Ali Kheradmand, Brighten Godfrey, and Matthew Caesar. 2020. Plankton: Scalable

network configuration verification through model checking. In 17th USENIX Symposium on Networked Systems Design

and Implementation (NSDI’20). Santa Clara, CA.

[68] Ohad Rodeh, Josef Bacik, and Chris Mason. 2013. BTRFS: The Linux B-tree filesystem. ACM Transactions on Storage

(TOS) 9, 3 (2013), 1–32.

[69] Mendel Rosenblum and John K. Ousterhout. 1991. The design and implementation of a log-structured file system. In

Proceedings of the 13th ACM Symposium on Operating System Principles, SOSP 1991. Pacific Grove, CA, USA.

[70] Sergej Schumilo, Cornelius Aschermann, Robert Gawlik, Sebastian Schinzel, and Thorsten Holz. 2017. kAFL:

Hardware-assisted feedback fuzzing for {OS} kernels. In 26th {USENIX} Security Symposium ({USENIX} Security 17).

San Jose, CA, USA.

[71] Konstantin Serebryany, Derek Bruening, Alexander Potapenko, and Dmitriy Vyukov. 2012. AddressSanitizer: A fast

address sanity checker. In 2012 {USENIX} Annual Technical Conference ({USENIX} {ATC} 12). 309–318.

[72] Konstantin Serebryany and Timur Iskhodzhanov. 2009. Threadsanitizer: Data race detection in practice. In Proceedings

of the Workshop on Binary Instrumentation and Applications. 62–71.

[73] Zhiming Shen, Zhen Sun, Gur-Eyal Sela, Eugene Bagdasaryan, Christina Delimitrou, Robbert Van Renesse, and Hakim

Weatherspoon. 2019. X-Containers: Breaking down barriers to improve performance and isolation of cloud-native

ACM Transactions on Storage, Vol. 19, No. 4, Article 34. Publication date: September 2023.

https://en.wikipedia.org/wiki/Network_File_System
https://nvd.nist.gov/vuln-metrics/cvss
https://csrc.nist.gov/glossary/term/attack_surface

34:26 J. Sun et al.

containers. In Proceedings of the 24th International Conference on Architectural Support for Programming Languages

and Operating Systems (ASPLOS’19).

[74] Konstantin Shvachko, Hairong Kuang, Sanjay Radia, Robert Chansler, et al. 2010. The Hadoop distributed file system..

In IEEE 26th Symposium on Mass Storage Systems and Technologies, (MSST’10). Incline Village, NV, USA.

[75] Helgi Sigurbjarnarson, James Bornholt, Emina Torlak, and Xi Wang. 2016. Push-button verification of file systems

via crash refinement. In Proceedings of the 12th USENIX Symposium on Operating Systems Design and Implementation

(OSDI’16). Savannah, GA, USA.

[76] Satyam Singh. 2021. Exploiting NFS Share. https://resources.infosecinstitute.com

[77] Stephen Smalley, Chris Vance, and Wayne Salamon. 2001. Implementing Selinux as a Linux security module. NAI Labs

Report 1, 43 (2001), 139.

[78] Peter Snyder. 1990. tmpfs: A virtual memory file system. In Proceedings of the Autumn 1990 EUUG Conference. 241–248.

[79] Jennifer G. Steiner, B. Clifford Neuman, and Jeffrey I. Schiller. 1988. Kerberos: An authentication service for open

network systems.. In USENIX Winter Technical Conference. Dallas, TX, USA.

[80] Stephen Tweedie. 1998. Journaling the Linux ext2fs filesystem. In 4th Annual Linux Expo, 1998. Durhan, NC, USA.

[81] 2019. VulDB. https://vuldb.com/?id.141577

[82] Randolph Y. Wang and Thomas E. Anderson. 1993. xFS: A wide area mass storage file system. In Proceedings of IEEE

4th Workshop on Workstation Operating Systems. WWOS-III. IEEE, 71–78.

[83] Jinpeng Wei and Calton Pu. 2005. TOCTTOU vulnerabilities in Unix-style file systems: An anatomical study. In 4th

USENIX Conference on File and Storage Technologies (FAST’05). San Francisco, CA, USA.

[84] Sage A. Weil, Scott A. Brandt, Ethan L. Miller, Darrell D. E. Long, and Carlos Maltzahn. 2006. Ceph: A scalable, high-

performance distributed file system. In Proceedings of the 7th Symposium on Operating systems Design and Implemen-

tation (OSDI’06). Seattle, WA, USA.

[85] Wikipedia contributors. 2022. Attack surface - Wikipedia, The Free Encyclopedia. https://en.wikipedia.org/wiki/

Attack_surface

[86] Fengwei Xu, Ming Fu, Xinyu Feng, Xiaoran Zhang, Hui Zhang, and Zhaohui Li. 2016. A practical verification frame-

work for preemptive OS kernels. In Computer Aided Verification - 28th International Conference, CAV 2016. Toronto,

ON, Canada.

[87] Meng Xu, Chengyu Song, Yang Ji, Ming-Wei Shih, Kangjie Lu, Cong Zheng, Ruian Duan, Yeongjin Jang, Byoungyoung

Lee, Chenxiong Qian, Sangho Lee, and Taesoo Kim. 2016. Toward engineering a secure Android ecosystem: A survey

of existing techniques. ACM Comput. Surv. 49, 2 (Aug. 2016).

[88] Wen Xu, Hyungon Moon, Sanidhya Kashyap, Po-Ning Tseng, and Taesoo Kim. 2019. Fuzzing file systems via two-

dimensional input space exploration. In Proceedings of the 2019 IEEE Symposium on Security and Privacy (Oakland’19).

San Francisco, CA, USA.

[89] Fabian Yamaguchi, Nico Golde, Daniel Arp, and Konrad Rieck. 2014. Modeling and discovering vulnerabilities with

code property graphs. In 2014 IEEE Symposium on Security and Privacy. IEEE, 590–604.

[90] Junfeng Yang, Can Sar, and Dawson R. Engler. 2006. EXPLODE: A lightweight, general system for finding serious

storage system errors. In Proceedings of the 7th Symposium on Operating Systems Design and Implementation (OSDI’06).

Seattle, WA, USA.

[91] Junfeng Yang, Paul Twohey, Dawson R. Engler, and Madanlal Musuvathi. 2004. Using model checking to find serious

file system errors. In 6th Symposium on Operating System Design and Implementation (OSDI 2004). San Francisco, CA,

USA.

[92] Shin Yoo and Mark Harman. 2012. Regression testing minimization, selection and prioritization: A survey. Software

Testing, Verification and Reliability 22, 2 (2012), 67–120.

[93] 2022. ZDNet. https://www.zdnet.com/article/fbi-warning-this-ransomware-gang-has-hit-over-100-targets-and-

made-more-than-60-million/

[94] Ennan Zhai, Ruichuan Chen, David Isaac Wolinsky, and Bryan Ford. 2014. Heading off correlated failures through

independence-as-a-service. In Proceedings of the 11th USENIX Symposium on Operating Systems Design and Implemen-

tation (OSDI’14). Broomfield, CO, USA.

Received 17 June 2022; revised 31 December 2022; accepted 17 March 2023

ACM Transactions on Storage, Vol. 19, No. 4, Article 34. Publication date: September 2023.

https://resources.infosecinstitute.com
https://vuldb.com/?id.141577
https://en.wikipedia.org/wiki/Attack_surface
https://www.zdnet.com/article/fbi-warning-this-ransomware-gang-has-hit-over-100-targets-and-made-more-than-60-million/

